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Abstract
Adversarial feature alignment is widely used in do-
main adaptive object detection. Despite the ef-
fectiveness on CNN-based detectors, its applica-
bility to transformer-based detectors is less stud-
ied. In this paper, we present AQT (adversarial
query transformers) to integrate adversarial feature
alignment into detection transformers. The gen-
erator is a detection transformer which yields a
sequence of feature tokens, and the discriminator
consists of a novel adversarial token and a stack
of cross-attention layers. The cross-attention lay-
ers take the adversarial token as the query and
the feature tokens from the generator as the key-
value pairs. Through adversarial learning, the
adversarial token in the discriminator attends to
the domain-specific feature tokens, while the gen-
erator produces domain-invariant features, espe-
cially on the attended tokens, hence realizing ad-
versarial feature alignment on transformers. Thor-
ough experiments over several domain adaptive ob-
ject detection benchmarks demonstrate that our ap-
proach performs favorably against the state-of-the-
art methods. Source code is available at https:
//github.com/weii41392/AQT.

1 Introduction
Object detection is active in computer vision and artificial in-
telligence researches because it is essential to a broad range of
real-world applications, such as surveillance and self-driving
cars. While the latest object detection methods [Ren et al.,
2015; Liu et al., 2016; Tian et al., 2019] have shown great
success in several challenging benchmarks [Lin et al., 2014],
their capabilities largely rely on massive labeled data. More
importantly, applying pretrained object detectors to new envi-
ronments would result in performance degradation due to the
distribution mismatch between training data and deployed en-
vironments.

Unsupervised domain adaptation (UDA) [Ganin and Lem-
pitsky, 2015; Tzeng et al., 2017] has been developed to
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Figure 1: Our adversarial feature alignment for detection transform-
ers. The discriminator in adversarial learning consists of a learnable
adversarial token and cross-attention layers, while the generator is a
detection transformer. For each cross-attention layer, the adversarial
token serves as the query (Q) and the feature tokens as the key-value
pair (K and V ). To minimize the adversarial loss Ladv , the adver-
sarial token attends to the feature tokens discriminative for domain
classification. On the contrary, the generator is forced to eliminate
the domain-specific features to maximize Ladv . As constrained by
the detection loss Ldet, the generator prevents semantic collapse in
the feature tokens in the meantime. Adversarial feature alignment is
thus carried out.

mitigate these issues. In UDA, a model is usually trained
with data from a source domain and a similar but differ-
ent target domain, while the data labels are only available
in the source domain. Under the covariate shift assump-
tion, domain adaptation is typically carried out by minimiz-
ing cross-domain discrepancy so that the model supervised
on the source domain can learn knowledge and representa-
tions generalizable to the target domain. Following the estab-
lished practices for classification [Tzeng et al., 2017] and seg-
mentation [Hoffman et al., 2018] tasks, many domain adap-
tive object detectors [Saito et al., 2019; Chen et al., 2020;
Rezaeianaran et al., 2021] adopt adversarial feature align-
ment. By introducing a domain classifier, a learnable measure
of domain shifts can be used to impose minimax objectives
and to force domain invariance. The resultant models tend to
be free from biases towards the source domain.
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Despite its effectiveness on CNN-based detectors, adver-
sarial feature alignment is less studied on transformer-based
detectors [Carion et al., 2020; Zhu et al., 2021]. CNNs and
transformers are intrinsically different. CNNs capture vi-
sual characteristics in features maps via convolutions, while
transformers model token-wise relationships via the attention
mechanism. The recent studies [Wang et al., 2021a] also
show that adversarial feature alignment on the CNN back-
bone of detection transformers brings only limited improve-
ments for domain adaptation.

To address this issue, we present AQT (adversarial query
transformer) that combines adversarial learning and trans-
formers for domain adaptive object detection. Since token-
wise operations are implemented in transformers, it is logi-
cal to conduct token-wise feature alignment and to focus on
the domain-specific tokens. Based on this observation, we
develop a strategy for the proposed AQT. We illustrate its
conceptual workflow in Figure 1. The generator is the orig-
inal detection transformer (denoted by self-attention layers
for simplicity). It extracts a sequence of feature tokens from
the input image and further detects the objects from it. The
discriminator is a learnable adversarial token and a stack of
cross-attention layers. In each cross-attention layer, the ad-
versarial token serves as the query and the intermediate fea-
ture tokens from the generator as the key-value pair. To min-
imize the adversarial loss, the adversarial token tends to at-
tend to the domain-specific feature tokens. On the contrary,
the generator is forced to generate domain-invariant features,
especially for the attended key-value pairs, to maximize the
loss. As constrained by the detection loss Ldet, the generator
also has to prevent semantic collapse in the feature tokens.
Adversarial feature alignment is thus carried out.

The proposed mechanism is flexible. First, it is a plug-and-
adapt module and can work with many existing transformer-
based detectors [Carion et al., 2020; Zhu et al., 2021]. Sec-
ond, it can adversarially align features of different levels.
Feature tokens in Figure 1 can correspond to patches, fea-
ture maps, or detected objects. Namely, our AQT can realize
space-, channel-, and instance-level feature alignment.

The main contribution of this work is three-fold. First, we
propose a novel approach AQT, which integrates adversarial
feature alignment into a detection transformer via an adver-
sarial token to identify the feature tokens hard to align at that
moment. Second, the proposed AQT is simple and flexible.
It can work with many existing transformer-based detectors
and align features of diverse levels in a unified way. Third,
the proposed AQT performs favorably against state-of-the-art
methods on the benchmarks, including Cityscapes [Cordts et
al., 2016] to Foggy Cityscapes [Sakaridis et al., 2018] and
Sim10k [Johnson-Roberson et al., 2017] to Cityscapes.

2 Related Work
2.1 Object Detection
As a fundamental topic in computer vision, object detec-
tion has been actively studied for decades. Recent advances
in object detection can be mainly attributed to CNNs, and
categorized by whether region-of-interest proposals are ex-
tracted (two-stage) or not (one-stage). While two-stage de-

tectors [Ren et al., 2015] are considered to be more accurate,
one-stage detectors [Liu et al., 2016] are benefited from their
simple structure and can perform faster.

Different from CNN-based detectors, transformer-based
detectors [Carion et al., 2020; Zhu et al., 2021] explore token-
wise dependencies for context modeling and eliminate the
need for many hand-crafted components, such as anchor gen-
eration and non-maximum suppression. DETR [Carion et al.,
2020] first introduces transformers to object detection and
yields competitive performance. To mitigate the slow conver-
gence and prohibitive memory usage of DETR, Deformable
DETR [Zhu et al., 2021] adopts a learnable sparse attention
to speed up convergence and to process multi-scale feature
maps efficiently. While these methods focus on supervised
learning, we aim at generalizing a detection transformer to
the unlabeled target domain by utilizing cross-domain data.

2.2 Domain Adaptive Object Detection
To circumvent performance degradation caused by distribu-
tion shifts, the research of domain adaptive object detection
has drawn attention recently. The seminal work [Chen et
al., 2018] investigates adversarial domain adaptation [Ganin
and Lempitsky, 2015] for Faster R-CNN [Ren et al., 2015].
Inspired by it, many following works [Saito et al., 2019;
Xu et al., 2020a; Hsu et al., 2020; VS et al., 2021; Wang
et al., 2021b] employ domain classifiers on different aspects
of cross-domain features. Other groups of works utilize self-
training [Kim et al., 2019; Munir et al., 2021], mean teacher
framework [Cai et al., 2019; Deng et al., 2021], and image-
to-image translation [Chen et al., 2020]. Although these
methods are not categorized in adversarial domain adapta-
tion, some of them also adopt adversarial learning as a part
of their algorithms.

The aforementioned methods are usually constrained to
CNN-based detectors, such as Faster R-CNN [Ren et al.,
2015], SSD [Liu et al., 2016], and FCOS [Tian et al.,
2019]. Due to the inherent differences between CNNs and
transformers, they may be inapplicable to or suboptimal
for transformer-based detectors. While detection transform-
ers [Carion et al., 2020; Zhu et al., 2021] have revealed their
potentials, less efforts have been made for their adaptation.
A recent study [Wang et al., 2021a] empirically finds that
existing approaches bring only limited improvements for de-
tection transformers. The authors attribute this finding to the
lack of domain invariance in sequential features, and thus pro-
pose domain query-based feature alignment. As their domain
query belongs to the generator, it can aggregate global fea-
tures, but not necessarily domain-specific ones. In contrast,
our adversarial token works for the discriminator and attends
to the hard-to-align feature tokens. Thus, the generator is en-
couraged to eliminate domain-specific features and produce
more domain-invariant ones. In addition, thanks to the flexi-
ble adversarial token, our AQT can carry out space-, channel-,
and instance-level feature alignment in a unified manner.

3 Proposed Method
This section describes our proposed approach. We first give a
method overview and then elaborate the space-, channel-, and
instance-level feature alignment, respectively.
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Figure 2: Overview of our proposed Adversarial Query Transformers (AQT). (a) Our AQT framework with (b) space-level, (c) channel-level,
and (d) instance-level feature alignment.

3.1 Overview
Given a source dataset S = {xi

s, y
i
s}

Ns
i=1 and an unlabeled

target dataset T = {xi
t}

Nt
i=1 where x denotes an image and

y represents the ground truth for object detection, we train
an adaptive detection transformer F with both S and T , and
evaluate it on data in the target domain. To this end, the pro-
posed AQT integrates adversarial feature alignment into de-
tection transformer, and carries out domain invariance in the
space, channel, and instance levels.

An overview of our framework is shown in Figure 2a. The
framework consists of a generator which is an object detec-
tor and three discriminators which perform feature alignment
in the space, channel, and instance levels, respectively. The
detector includes a CNN backbone GB for feature extraction
and a detection transformer with an encoder GE and a de-
coder GD. Given an input image x, we apply the backbone
GB and get its feature maps z ∈ RC×H×W , where C is the
number of channels, and H and W denote the map height and
width, respectively. The feature maps z are then flattened into
patch tokens zp ∈ RC×L, where L = H ×W is the number
of tokens. The encoder GE aggregates features for each token
in zp via the self-attention mechanism. The decoder GD car-
ries out object detection by taking the object queries as input.
A detection loss Ldet is applied to derive the network.

For adversarial feature alignment, each layer of the en-
coder GE consists of not only a self-attention module and a
FFN but also a space-level alignment module (green-shaded
region in Figure 2a) and a channel-level alignment module
(blue-shaded region in Figure 2a). Similarly, each layer in the
decoder GD is associated with an additional instance-level
alignment module (yellow-shaded region in Figure 2a). The

three modules act as the discriminators, and perform space-,
channel-, and instance-level feature alignment, respectively.

Figure 2b illustrates the space-level alignment module,
which includes a cross-attention layer. A space-level adver-
sarial query, or space query for short, iterates through the lay-
ers in GE . The pixels in the feature maps yield the feature to-
kens and serve as the key-value pairs. A domain classifier DS

is adopted in the space-level alignment module of the last en-
coder layer, and is learned to predict the domain of the space
query. By changing the feature tokens from pixels to chan-
nels and detected objects, Figure 2c and Figure 2d show the
channel-level and instance-level alignment modules, respec-
tively. We elaborate the three modules as follows.

3.2 Space-level Feature Alignment
As mentioned in [Wang et al., 2021a], direct feature align-
ment on the CNN backbone results in suboptimal perfor-
mance on detection transformers. To address this problem,
we introduce the discriminator, i.e. the adversarial token and
cross-attention layers, for adversarial feature alignment.

The adversarial token, similar to the class token [Dosovit-
skiy et al., 2021], is trainable and derived to fulfill some ob-
jective. For the class token, the objective is to find discrim-
inative features for object recognition, while for adversarial
token, the objective is to identify hard-to-align feature tokens
for domain classification. In attention mechanisms, a query Q
attends to a set of keys K and maps itself into a linear combi-
nation of the corresponding values V depending on attention
weights. As a result, whichever tokens the query gives a high
attention weight on, these tokens are likely to be discrimina-
tive for domain classification, i.e. being domain-specific.
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In each layer i of the transformer encoder GE , we embed a
space-level alignment module after the original self-attention
layer. This module consists of a cross-attention layer and a
linear mapping layer (simplified from a FFN). As shown in
Figure 2b, in the cross-attention layer, the adversarial to-
ken acts as a query, while the patch tokens zp, which can
be viewed as the output of the generator, act as the key-
value pairs. Since this process is to align space-level features,
we term the adversarial token as the space-level adversarial
query, or space query qs. Let qis and zip denote the space query
and patch tokens which the alignment module in the i-th en-
coder layer takes as input, where q1s is a randomly initialized
C-dimensional vector and z1p = zp. The module in the i-th
encoder layer maps the space query qis to its successor qi+1

s
w.r.t. zip by

qi+1
s = Linear(MultiHeadAttn(qis, z

i
p)), (1)

where the multi-head attention function MultiHeadAttn de-
fined in [Zhu et al., 2021] takes two inputs, query and key.
Note that we omit positional embeddings of the keys, nor-
malization layers, and residual connections for simplicity.
In practice, the key-value pairs pass by a gradient reversal
layer [Ganin and Lempitsky, 2015] first to reverse the gradi-
ents backpropagated to the generator. This process continues
until the end of GE , where i is the number of encoder layers
N . The space-level domain classifier DS then identifies the
domain of the image given the output of the final-layer space
query qN+1

s . This domain classification task is optimized by
minimizing the following binary cross-entropy loss

Lsp
adv =− d logDS(q

N+1
s )−

(1− d) log(1−DS(q
N+1
s )), (2)

where d denotes the domain label. It takes value 0 for
source images, and 1 otherwise. Derived to minimize this
adversarial loss Lsp

adv , the space query qs and the space-level
alignment module manage to identify domain-specific local
patches. The generator, i.e. the original layers in detection
transformer, with an aim to maximize Lsp

adv , is forced to gen-
erate more domain-invariant features. As adversarial learning
progresses, space-level cross-domain features are adapted.

3.3 Channel-level Feature Alignment
Although space-level feature alignment effectively sup-
presses domain-specific local patches, it alone does not elim-
inate the global biases in the encoder GE . The main reason
is that attention maps are relatively sparse. Only the keys of
the most discriminative patches are assigned high attention
weights. To solve this problem, we also adopt channel-level
feature alignment in GE .

We define channel tokens zc ∈ RL̂×C as a different view
of patch tokens zp. Each channel token comes from a feature
map. L̂ is a hyperparameter, and L̂ = C ≪ L empirically.
The reason of resizing is to handle images of different sizes
and reduce parametrization overloads. In our implementa-
tion, we reshape zp back into z ∈ RC×H×W , and pool z to
yield ẑ ∈ RC×P×P , where P 2 = L̂. Thus, we obtain zc by
flattening and transposing ẑ.

To enable channel-level alignment, we leverage a channel-
level adversarial query, or channel query qc. Similar to the
space-level alignment module, we embed a channel-level
alignment module in each layer of GE . Let qic and zic denote
the channel query and channel tokens which the i-th align-
ment module takes as input, where q1s is a randomly initial-
ized L̂-dimensional vector and zic comes from zip. The mod-
ule in the i-th encoder layer maps the channel query qic to its
successor qi+1

c w.r.t. zic via

qi+1
c = Linear(MultiHeadAttn(qic, z

i
c)). (3)

Again, this process continues until the end of GE . The
channel-level domain classifier DC then identifies the domain
of the image given the final-layer channel query qN+1

c . The
channel-level adversarial loss thus yields

Lch
adv =− d logDC(q

N+1
c )−

(1− d) log(1−DC(q
N+1
c )). (4)

3.4 Instance-level Feature Alignment
Although we make the encoder GE domain-adaptive using
both space-level and channel-level alignment, the decoder
GD remains biased towards the source domain. Thus, we
remedy this issue and show the flexibility of our method by
extending it to instance-level feature alignment.

In a detection transformer, object queries zo ∈ RC×Lo ,
are Lo learned embeddings that decode object representations
from the encoder output. To align object representations in
zo, we introduce the instance-level adversarial query, or in-
stance query qi. Similar to the alignment modules built in
GE , we embed an instance-level module in each layer of GD.
Let qji and zjo denote the instance query and object queries
which the j-th alignment module takes as input, where q1i is a
randomly initialized C-dimensional vector and z1o = zo. The
module in the j-th decoder layer maps the instance query qji
to its successor qj+1

i w.r.t. zjo by

qj+1
i = Linear(MultiHeadAttn(qji , z

j
o)). (5)

This process continues until the end of GD, where j is the
number of decoder layers M . The instance-level adversarial
loss is thus yielded

Lins
adv =− d logDI(q

M+1
i )−

(1− d) log(1−DI(q
M+1
i )). (6)

Overall Objective. We summarize the overall objective of
the proposed Adversarial Query Transformer. The overall ad-
versarial loss function is formulated as

Ladv = λspLsp
adv + λchLch

adv + λinsLins
adv, (7)

where λsp, λch, and λins denote the balancing weights for
the corresponding terms in the loss function. Ldet denotes
the detection loss of the adopted detection transformer. The
overall loss function of the proposed AQT is

LAQT = Ldet − Ladv, (8)
and the optimization objective for our domain adaptive detec-
tion transformer F is

F ∗ = argmin
F

min
GB ,GE

GD

max
DS ,DC

DI

LAQT . (9)
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Method Backbone prsn rider car truck bus train motor bike mAP

Source Only (Faster R-CNN) R-50 26.9 38.2 35.6 18.3 32.4 9.6 25.8 28.6 26.9
DA-Faster [Chen et al., 2018] R-50 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0
RPA [Zhang et al., 2021] V-16 33.3 45.6 50.5 30.4 43.6 42.0 29.7 36.8 39.0
HTCN [Chen et al., 2020] V-16 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
ICCR-VDD [Wu et al., 2021] V-16 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0
DSS [Wang et al., 2021b] R-50 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9
KTNet [Tian et al., 2021] V-16 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9
UMT [Deng et al., 2021] V-16 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7
MeGA-CDA [VS et al., 2021] V-16 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
ViSGA [Rezaeianaran et al., 2021] R-50 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3

Source Only (FCOS) R-50 36.9 36.3 44.1 18.6 29.3 8.4 20.3 31.9 28.2
EPM [Hsu et al., 2020] R-50 44.2 46.6 58.5 24.8 45.2 29.1 28.6 34.6 39.0
SSAL [Munir et al., 2021] V-16 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6

Source Only (Deformable DETR) R-50 37.7 39.1 44.2 17.2 26.8 5.8 21.6 35.5 28.5
SFA† [Wang et al., 2021a] R-50 47.1 46.4 62.2 30.0 50.3 35.5 27.9 41.2 42.6
AQT† (Ours) R-50 49.3 52.3 64.4 27.7 53.7 46.5 36.0 46.4 47.1

Table 1: Results of Cityscapes to Foggy Cityscapes. “prsn”, “motor”, and “bike” denote “person”, “motorcycle”, and “bicycle”, respectively.

Method prsn rider car truck bus motor bike mAP

Source Only (Faster R-CNN) 28.8 25.4 44.1 17.9 16.1 13.9 22.4 24.1
DA-Faster [Chen et al., 2018] 28.9 27.4 44.2 19.1 18.0 14.2 22.4 24.9
ICR-CCR-SW [Xu et al., 2020a] 32.8 29.3 45.8 22.7 20.6 14.9 25.5 27.4

Source Only (FCOS) 38.6 24.8 54.5 17.2 16.3 15.0 18.3 26.4
EPM [Hsu et al., 2020] 39.6 26.8 55.8 18.8 19.1 14.5 20.1 27.8

Source Only (Deformable DETR) 38.9 26.7 55.2 15.7 19.7 10.8 16.2 26.2
SFA [Wang et al., 2021a] 40.2 27.6 57.5 19.1 23.4 15.4 19.2 28.9
AQT (Ours) 38.2 33.0 58.4 17.3 18.4 16.9 23.5 29.4

Table 2: Results of Cityscapes to BDD100k daytime. “prsn”, “motor”, and “bike” denote “person”, “motorcycle”, and “bicycle”,
respectively. All competing methods are developed upon ResNet-50.

4 Experimental Results

4.1 Datasets and Experimental Settings

Cityscapes to Foggy Cityscapes. Cityscapes [Cordts et al.,
2016] is an urban scene dataset containing 2,975 training im-
ages and 500 validation images. Foggy Cityscapes [Sakaridis
et al., 2018] is synthesized from and shared annotations with
Cityscapes. We take the highest fog density images follow-
ing [Rezaeianaran et al., 2021]. In this setting, Cityscapes is
used as the source domain, while Foggy Cityscapes is used as
the target domain. 8 categories are considered.

Cityscapes to BDD100k daytime. BDD100k [Yu et al.,
2020] is a large-scale driving dataset with diverse scenarios.
In this setting, Cityscapes is used as the source domain, while
the daytime subset of BDD100k is selected as the target do-
main. Following [Xu et al., 2020a], the common 7 categories
are considered.

Sim10k to Cityscapes. Sim10k [Johnson-Roberson et al.,
2017] is a synthetic driving dataset containing 10,000 images.
In this setting, Sim10k is used as the source domain, while
Cityscapes is used as the target domain. Following [Chen et
al., 2018], only the category car is considered.

4.2 Implementation Details
We select Deformable DETR [Zhu et al., 2021] as our ob-
ject detector with a ResNet-50 backbone pre-trained on Im-
ageNet [Deng et al., 2009]. We inherit most hyperparame-
ters and training settings from Zhu et al., including the detec-
tion loss Ldet and Xavier initialization [Glorot and Bengio,
2010]. In Cityscapes to Foggy Cityscapes, all λsp, λch, and
λins are set to 10−1. In the other settings, following [Saito
et al., 2019], we adopt local alignment on the backbone and
weak alignment using the focal loss [Lin et al., 2017]. The
λsp, λch and λins are set to 10−1, 10−5, and 10−4, respec-
tively. The batch size is set to 8 in all experiments.

4.3 Comparing with State-of-the-arts
From Table 1 to Table 3, we compare the proposed AQT
with the existing methods based on Faster R-CNN [Ren et al.,
2015], FCOS [Tian et al., 2019], or Deformable DETR [Zhu
et al., 2021] on three adaptation settings. “Source Only” indi-
cates the baselines trained with source data only; “V-16” and
“R-50” indicate the backbone is VGG-16 [Simonyan and Zis-
serman, 2015] and ResNet-50 [He et al., 2016]. † indicates
iterative bounding box refinement [Zhu et al., 2021].
Cityscapes to Foggy Cityscapes. After adaptation, our
method improves the baseline by 18.6% and outperforms all
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(a) An input image and its corresponding attention map.

Source only AQT (ours) SFA

(b) Feature distribution visualizations using t-SNE.

Figure 3: Visualizations to analyze the proposed AQT.

Method Backbone car AP

Source Only (Faster R-CNN) R-50 39.4
DA-Faster [Chen et al., 2018] R-50 41.9
UMT [Deng et al., 2021] V-16 43.1
SWDA [Saito et al., 2019] R-50 44.6
MeGA-CDA [VS et al., 2021] V-16 44.8
RPA [Zhang et al., 2021] V-16 45.7
GPA [Xu et al., 2020b] R-50 47.6
ViSGA [Rezaeianaran et al., 2021] R-50 49.3
KTNet [Tian et al., 2021] V-16 50.7

Source Only (FCOS) R-50 42.5
EPM [Hsu et al., 2020] R-50 47.3
SSAL [Munir et al., 2021] V-16 51.8

Source Only (Deformable DETR) R-50 47.4
SFA [Wang et al., 2021a] R-50 52.6
AQT (Ours) R-50 53.4

Table 3: Results of Sim10k to Cityscapes.

the other methods. We observe that our method performs
worse on the categories “truck”, “bus”, and “train”. We
hypothesize this results from fewer instances in these cate-
gories, given that transformers rely on sufficient data more
than CNNs.

Cityscapes to BDD100k daytime. Our method outper-
forms all the other methods in terms of mAP. All the meth-
ods reported in this experiment is developed upon ResNet-
50. Again, our method performs worse on the categories with
fewer instances.

Sim10k to Cityscapes. Due to the larger domain gap, our
method outperforms the state-of-the-arts by a relatively small
margin. However, our method still outperforms SFA [Wang
et al., 2021a].

Qualitative Result. We evaluate the detection quality of
our method by comparing it with three existing methods,
EPM [Hsu et al., 2020], ViSGA [Rezaeianaran et al., 2021],
and SFA [Wang et al., 2021a]. The results in Figure 4 show
the superior performance of our method.

4.4 Ablation Study and Analysis
In this section, we provide detailed ablation study and analy-
sis of AQT. Following [VS et al., 2021], all these studies are
conducted on Cityscapes to Foggy Cityscapes.

Where the Adversarial Token Looks at. To better under-
stand how the adversarial token works, we provide an atten-
tion map of a space query on an input image, as shown in

Space Channel Instance Box-
Refine

Two-
Stage mAP

28.5
✓ 40.6

✓ 36.2
✓ 36.8

✓ ✓ 41.4
✓ ✓ 40.9

✓ ✓ 40.1
✓ ✓ ✓ 44.8
✓ ✓ ✓ ✓ 47.1
✓ ✓ ✓ ✓ ✓ 44.7

Table 4: Quantitative Ablation study of AQT on Cityscapes to Foggy
Cityscapes. Box-Refine indicates iterative bounding box refinement
and Two-Stage indicates two-stage Deformable DETR.

Figure 3a. The regions with strong responses in the attention
map correspond to the foggiest regions in the input image.
This demonstrates that the adversarial token tends to attend
to the domain-specific features.

Visualizing Feature Distribution Alignment. We use t-
SNE [van der Maaten and Hinton, 2008] to visualize the
activations of different detection transformers, including the
baseline (Source only), SFA [Wang et al., 2021a], and ours.
Figure 3b shows the results. Different colors represent the
features in different domains. Empirically the aligned fea-
tures via both AQT and SFA are more indistinguishable than
the baseline. Interestingly, we notice the aligned feature dis-
tribution via AQT is more perceptually similar to the baseline.

Quantitative Ablation Study. We analyze the effect of
the proposed three levels of alignment in Table 4, where
Box-Refine and Two-Stage are inherited from Deformable
DETR [Zhu et al., 2021]. Based on this experiment, we con-
clude three major observations. First, each of the three levels
of alignment leads to reasonable improvement. This demon-
strates the effectiveness and flexibility of the proposed mech-
anism. Second, when a certain level of alignment is aug-
mented with another one, a steady growth occurs. We can
observe a rather considerable improvement when the three
alignments are adopted, compared to the settings where only
any two are adopted. Lastly, our framework can also benefit
from other techniques. When using Box-Refine, our method
achieves the best result. Thus, we take it as our default setting
when compared with the state-of-the-arts.

Qualitative Ablation Study. In Figure 5, we show sev-
eral detection results from the baseline (Source only), the
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Figure 4: Our detection results compared with the state-of-the-art methods. Different categories are marked with different colors.

Figure 5: Qualitative ablation studies on Cityscapes to Foggy Cityscapes. The images on the first to fourth columns are from the models trained
with source data only, adopting channel-level alignment (denoted as “Ch.”), adopting both channel- & instance-level alignment (denoted as
“Ch.+Ins.”), and adopting channel- & instance- & space-level alignment (denoted as “Ch.+Ins.+Sp.”), respectively. The images in the last
column are ground truth bounding boxes. Different categories are marked with different colors.

adapted models, and the ground truth bounding boxes. In
the first row, the baseline barely discerns any object, while
the adapted model with channel-level alignment (“Ch.”) rec-
ognizes some objects. With the assistance of instance-level
alignment, the adapted model (“Ch.+Ins.”) can further lo-
calize the truck at the center of the image. It shows that
channel-level alignment effectively eliminates cross-domain
discrepancy, while the categories with few instances are still
hard to detect. This drawback is compensated when adopt-
ing instance-level alignment due to reducing biases in the ob-
ject queries. In the second row, the models in the left three
columns fail to recognize the truck at the left of the image,
while this false negative is resolved with space-level align-
ment (“Ch.+Ins.+Sp.”). This study empirically shows differ-
ent levels of alignment can be complementary.

5 Conclusion
In this paper, we present AQT (adversarial query transform-
ers), an adaptation framework to integrate adversarial feature
alignment into a detection transformer. It employs a novel
adversarial token and a stack of cross-attention layers as the
discriminator. As the query in each cross-attention layer, the
adversarial token attends the feature tokens from the gener-
ator that are hard to align at that moment. Constrained by
both the adversarial loss and the detection loss, the genera-
tor is forced to eliminate the domain-specific features while
maintaining semantics in the feature tokens, hence realizing
adversarial feature alignment on detection transformers. The

proposed AQT demonstrates the flexibility of the proposed
mechanism, combines the merits from the space-, channel-,
and instance-level alignment, and yields a new state-of-the-
art on several domain adaptive object detection benchmarks.
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